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Preliminary summary 1

• Exploration of small world property of coöccurence networks.

• Transfer of sentiment propagation to word sense induction.

• Extension of Veronis (2004) [1].

• (This is workshopped from a student project and some of the larger
limitations stem from that fact.)
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Overview 2

• Word sense induction:
• Task description
• Graph-based approaches
• Other approaches

• Root hub detection
• Small world property
• Hyperlex [1]
• Minimum spanning trees

• Root hub propagation
• Sentiment propagation [2]
• Toy example
• Disambiguation

• ABSINTH
• Experiments
• Results
• Limitations
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SemEval-2013: Task 11 3

• Word sense induction on search results .

• Given query (search string) and list of 100 results (w/ title, url and snippet),
cluster results by sense (from Wikipedia).

ID 47.6
url http://us.imdb.com/title/tt0120169/
title Soul Food (1997)
snippet Directed by George Tillman Jr.. With Vanessa Williams, Vivica A. Fox,...

Table 1: Example dataset entry for ’soul food’.
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Graph-based approaches 4

Identifying sense-components in coöccurence graphs:

• Hyperlex: Root hub detection & minimum spanning trees. [1]

• Chinese Whispers: Randomised spreading of senses through network. [3]

• SquaT++: Highly connected graph-patterns as stable senses. [4]
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Other approaches 5

Topic models, vector-space segmentation, document encoding, etc:

• LDA, topic models. [5]

• Topic models + word2vec. [6]

• Bert, transformers. [7]
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Small world property 6

• Most nodes are not neighbours of each other
(high clustering coëfficient: C >> Crand).

• But high likelihood being the “neighbour of a neighbour”
(short average path length: L ∼ Lrand).

• Common in social science [8], political science [9], but also coöccurence networks
[2].
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Hyperlex (Veronis 2004) 7

• Still cited as “state-of-the-art” roughly until the advent of the transformer.
[10][11]

• Root hub detection algorithm on (pruned) coöccurence graph:

• Step 1: Find node with highest number of neighbours1, mark as root hub.

• Step 2: Remove root hub and all neighbours from network.

• Repeat step 1 and 2 as long as nodes with high enough degree remain.

1and under a mean distance threshold (here 0.9.)
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Toy example (root hubs): surprise 8
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Minimum spanning trees 9

• Minimise graph to tree with minimal path length [12].

• Connect root hubs with new node at distance 0, apply MST algorithm.

• Resulting trees under root hubs represent sense lexicon. [1]
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Toy example (minimum spanning tree): surprise 10
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Sentiment propagation 11

• Similar algorithm to Chinese Whispers [13].

• In sentiment: manual annotation of seeds [2].

• In WSI: root hubs as seeds.

• Step 1: sum edge-weighted senses of neighbours.

• Step 2: assign sense with highest value.

• Sense vector of node is the edge-weighted sum of its neighbours.
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Toy example (label propagation): surprise 12
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Toy example (label propagation): surprise 12
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Disambiguation 13

• Assign each word in query the vector of the corresponding node’s senses.

• Weigh sense value by its distance to the respective root hub.

• Sum word vectors of entire query.

• Choose sense with the highest value.
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Disambiguation algorithm 14

1: procedure DISAMBIGUATE
2: S ← context string
3: G← labelled graph
4: H ← list of root hubs
5: v ← score vector with lengthH

6: for token ∈ S do
7: if token ∈ G then
8: for h ∈ H do
9: vh ← vh + token.ωh · 1

1+d(token,h)

return argmax(v)
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Data set 15

• English Wikipedia dump from 2014,

• without disambiguation pages.

• We do not use a web scraper (or the URLs provided).

• We fine-tuned our system on a sub-set of four samples from the development set
and tested on the remaining development set (110 queries).
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Experiments 16

• ABSINTH: root hubs + label propagation (+ minimum spanning tree2).
• w/o MST: discard unlabelled nodes.
• w/o labelling: Hyperlex [1].

• Baseline: 10 most frequent tokens as hubs + label propagation (+ MST).

• Singletons: All nodes distinct senses.

• All-in-one: All nodes one sense.

2Backup: early stopping produces unlabelled nodes, avg. 2% of nodes labelled by MST.
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Results 17

System F1 JI RI ARI
ABSINTH 55.21 31.73 54.73 6.98
w/o MST 53.57 33.00 56.21 9.08
w/o labelling 50.13 46.20 53.63 5.51

Baseline 49.87 42.52 51.76 3.26
Singletons 68.66 0.00 49.00 -0.07
All-in-one 47.42 51.00 51.00 0.00

Table 2: Results for F1-score, Jaccard index (JI), Rand index (RI) and adjusted Rand index (ARI).
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Output: the_colour_of_magic 18

Topic: the_colour_of_magic.
Nodes: 156 Edges: 471.
Characteristic path length: 3.93.
Global clustering coefficient: 0.69.
Mean cluster length (arithmetic): 20.0.
Mean cluster length (harmonic): 5.42.
Mean node degree: 6.03.
Number of clusters: 3.
Tuples gained through merging: 0.

Sense inventory:
-> pratchett: terry, discworld, book, series.
-> game: discworld, computer, mobile.
-> sean: astin, comments, album, home.
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Output: ghost 19

Topic: ghost.
Nodes: 868 Edges: 2785.
Characteristic path length: 4.47.
Global clustering coefficient: 0.39.
Mean cluster length (arithmetic): 7.87.
Mean cluster length (harmonic): 3.65.
Number of clusters: 8.
Tuples gained through merging: 3.

Sense inventory:
-> christmas: carol, scrooge, past, dickens.
-> film: horror, story, films, american.
-> album: band, song, single, records.
-> holy: church, father, son, catholic.
-> player: game, players, time, mode.
-> house: story, box, night, julian.
-> series: television, episode, tv, season.
-> town: county, united, states, population.
-> james: story, stories, r., m., horror.
-> rolls: royce, silver, cars, phantom.
-> family: moths, world, hepialidae.
-> rider: marvel, blaze, comics, vengeance.
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Output: prince_of_persia 20

Topic: prince_of_persia.
Nodes: 200 Edges: 674.
Characteristic path length: 3.55.
Global clustering coefficient: 0.66.
Mean cluster length (arithmetic): 17.33.
Mean cluster length (harmonic): 9.61.
Mean node degree: 6.74.
Number of clusters: 3.
Tuples gained through merging: 0.

Sense inventory:
-> arterton: sands, time, gyllenhaal.
-> game: video, ubisoft, sands, series.
-> creed: assassin, games, video, series.
-> screenshots: reviews, cheats, trailers.
-> %: reviews, score, pc, metacritic.
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Output: stephen_king 21

Topic: stephen_king.
Nodes: 157 Edges: 527.
Characteristic path length: 3.49.
Global clustering coefficient: 0.49.
Mean cluster length (arithmetic): 43.5.
Mean cluster length (harmonic): 36.45.
Mean node degree: 6.71.
Number of clusters: 2.
Tuples gained through merging: 0.

Sense inventory:
-> novel: film, book, horror, series.
-> short: story, collection, stories.
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Limitations 22

• Most recent & state-of-the-art work is on SemEval Task 13 (induction of senses for
polysemous verbs, adjectives and nouns from WordNet).

• We could get our hands on the test queries, but not the gold test sense sets.3

• We can report a relative gain compared to Hyperlex on this task, but not much
more.

• The coöccurence graphs still encoded textual similarities, not entity-conceptual
similarities.

3If someone still has that somewhere lying around, we would be happy to send you our clustering and
we’ll publish the results to Gitlab.
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Thanks!

Slides, resources and contact info:

 victor.zimmermann@uni-leipzig.de

 gitlab.com/axtimhaus

 axtimhaus.eu

 @dieaxtimhaus
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