Absinth

A small world approach to word sense induction.

Victor Zimmermann¹, Maja Hoffmann² ¹Webis Group, Leipzig University ²Leipzig University of Applied Sciences (HTWK)

Wednesday, 14th September 2022 Konvens 2022

- Exploration of small world property of coöccurence networks.
- Transfer of sentiment propagation to word sense induction.
- Extension of Veronis (2004) [1].
- (This is workshopped from a student project and some of the larger limitations stem from that fact.)

- Word sense induction:
 - Task description
 - Graph-based approaches
 - Other approaches

- Word sense induction:
 - Task description
 - Graph-based approaches
 - Other approaches
- Root hub detection
 - Small world property
 - Hyperlex [1]
 - Minimum spanning trees

- Word sense induction:
 - Task description
 - Graph-based approaches
 - Other approaches
- Root hub detection
 - Small world property
 - Hyperlex [1]
 - Minimum spanning trees

- Root hub propagation
 - Sentiment propagation [2]
 - Toy example
 - Disambiguation

- Word sense induction:
 - Task description
 - Graph-based approaches
 - Other approaches
- Root hub detection
 - Small world property
 - Hyperlex [1]
 - Minimum spanning trees

- Root hub propagation
 - Sentiment propagation [2]
 - Toy example
 - Disambiguation
- Absinth
 - Experiments
 - Results
 - Limitations

Word sense induction

Wednesday, 14th September 2022 Konvens 2022

- Word sense induction on search results .
- Given query (search string) and list of 100 results (w/ title, url and snippet), cluster results by sense (from Wikipedia).

ID	47.6				
url	http://us.imdb.com/title/tt0120169/				
title	Soul Food (1997)				
snippet	Directed by George Tillman Jr With Vanessa Williams, Vivica A. Fox,				
Table 1: Example dataset entry for 'soul food'.					

Identifying sense-components in coöccurence graphs:

- Hyperlex: Root hub detection & minimum spanning trees. [1]
- Chinese Whispers: Randomised spreading of senses through network. [3]
- SquaT++: Highly connected graph-patterns as stable senses. [4]

Topic models, vector-space segmentation, document encoding, etc:

- LDA, topic models. [5]
- Topic models + word2vec. [6]
- Bert, transformers. [7]

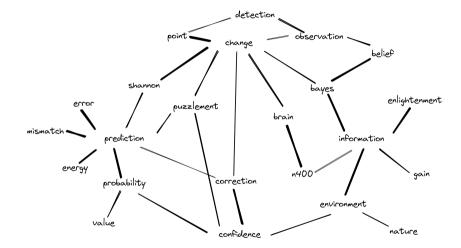
Root hub detection

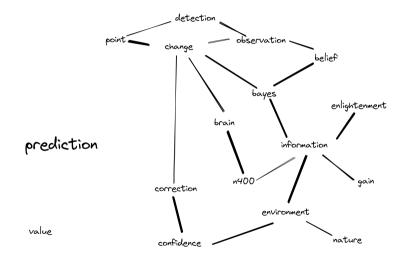
Wednesday, 14th September 2022 Konvens 2022

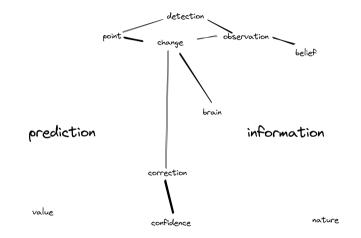
- Most nodes are not neighbours of each other (high clustering coëfficient: $C >> C_{rand}$).
- But high likelihood being the "neighbour of a neighbour" (short average path length: $L \sim L_{rand}$).
- Common in social science [8], political science [9], but also coöccurence networks [2].

- Still cited as "state-of-the-art" roughly until the advent of the transformer.
 [10][11]
- Root hub detection algorithm on (pruned) coöccurence graph:
- Step 1: Find node with highest number of neighbours¹, mark as root hub.
- Step 2: Remove root hub and all neighbours from network.
- Repeat step 1 and 2 as long as nodes with high enough degree remain.

 $^{^{1}}$ and under a mean distance threshold (here 0.9.)







change

belief

prediction

information

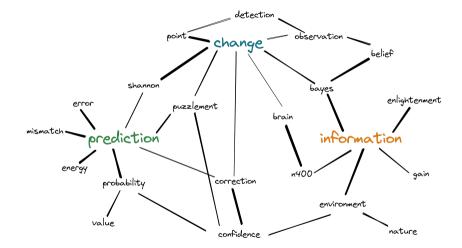
value

confidence

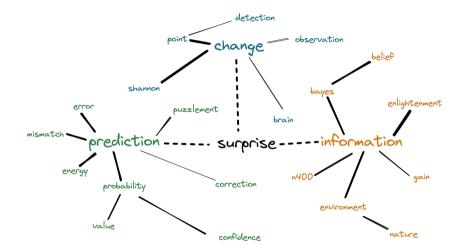
nature

- Minimise graph to tree with minimal path length [12].
- Connect root hubs with new node at distance 0, apply MST algorithm.
- Resulting trees under root hubs represent sense lexicon. [1]

Toy example (minimum spanning tree): surprise



Toy example (minimum spanning tree): surprise

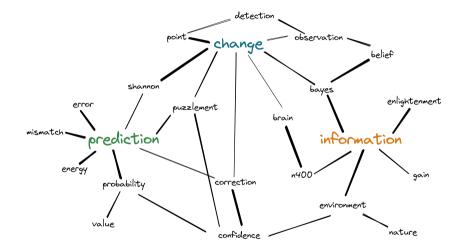


Root hub propagation

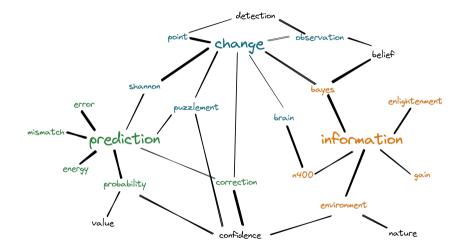
Wednesday, 14th September 2022 Konvens 2022

- Similar algorithm to Chinese Whispers [13].
- In sentiment: manual annotation of seeds [2].
- In WSI: root hubs as seeds.
- Step 1: sum edge-weighted senses of neighbours.
- Step 2: assign sense with highest value.
- Sense vector of node is the edge-weighted sum of its neighbours.

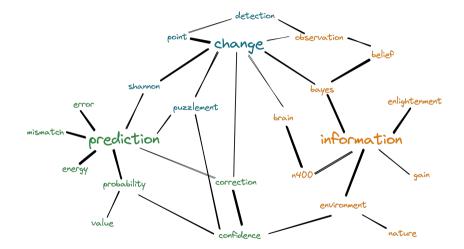
Toy example (label propagation): surprise



Toy example (label propagation): surprise



Toy example (label propagation): surprise



Disambiguation

- Assign each word in query the vector of the corresponding node's senses.
- Weigh sense value by its distance to the respective root hub.
- Sum word vectors of entire query.
- Choose sense with the highest value.

Disambiguation algorithm

- 1: procedure DISAMBIGUATE
- 2: $S \leftarrow \text{context string}$
- 3: $G \leftarrow \text{labelled } graph$
- 4: $H \leftarrow list \text{ of root hubs}$
- 5: $v \leftarrow \text{score } vector \text{ with length } H$
- 6: for $token \in S$ do
- 7: **if** $token \in G$ then
- 8: for $h \in H$ do

9:
$$v_h \leftarrow v_h + token.\omega_h \cdot \frac{1}{1+d(token,h)}$$

return $\arg \max(v)$

Absinth

Wednesday, 14th September 2022 Konvens 2022

- English Wikipedia dump from 2014,
- without disambiguation pages.
- We do not use a web scraper (or the URLs provided).
- We fine-tuned our system on a sub-set of four samples from the development set and tested on the remaining development set (110 queries).

Experiments

- Авзилтн: root hubs + label propagation (+ minimum spanning tree²).
 - w/o MST: discard unlabelled nodes.
 - w/o labelling: Hyperlex [1].
- Baseline: 10 most frequent tokens as hubs + label propagation (+ MST).
- Singletons: All nodes distinct senses.
- All-in-one: All nodes one sense.

²Backup: early stopping produces unlabelled nodes, avg. 2% of nodes labelled by MST.

Results

System	F_1	١٢	RI	ARI
Absinth	55.21	31.73	54.73	6.98
w/o MST	53.57	33.00	56.21	9.08
w/o labelling	50.13	46.20	53.63	5.51
Baseline	49.87	42.52	51.76	3.26
Singletons	68.66	0.00	49.00	-0.07
All-in-one	47.42	51.00	51.00	0.00

Table 2: Results for F₁-score, Jaccard index (JI), Rand index (RI) and adjusted Rand index (ARI).

Topic: the_colour_of_magic. Nodes: 156 Edges: 471. Characteristic path length: 3.93. Global clustering coefficient: 0.69. Mean cluster length (arithmetic): 20.0. Mean cluster length (harmonic): 5.42. Mean node degree: 6.03. Number of clusters: 3 Tuples gained through merging: 0.

Sense inventory:

-> pratchett: terry, discworld, book, series.

-> game: discworld, computer, mobile.

-> sean: astin, comments, album, home.

Output: ghost

Topic: ghost. Nodes: 868 Edges: 2785. Characteristic path length: 4.47. Global clustering coefficient: 0.39. Mean cluster length (arithmetic): 7.87. Mean cluster length (harmonic): 3.65. Number of clusters: 8. Tuples gained through merging: 3. Sense inventory:

- -> christmas: carol, scrooge, past, dickens.
- -> film: horror, story, films, american.
- -> album: band, song, single, records.
- -> holy: church, father, son, catholic.
- -> player: game, players, time, mode.
- -> house: story, box, night, julian.
- -> series: television, episode, tv, season.
- -> town: county, united, states, population.
- -> james: story, stories, r., m., horror.
- -> rolls: royce, silver, cars, phantom.
- -> family: moths, world, hepialidae.
- -> rider: marvel, blaze, comics, vengeance.

Topic: prince_of_persia. Nodes: 200 Edges: 674. Characteristic path length: 3.55. Global clustering coefficient: 0.66. Mean cluster length (arithmetic): 17.33. Mean cluster length (harmonic): 9.61. Mean node degree: 6.74. Number of clusters: 3 Tuples gained through merging: 0.

Sense inventory:

- -> arterton: sands, time, gyllenhaal.
- -> game: video, ubisoft, sands, series.
- -> creed: assassin, games, video, series.
- -> screenshots: reviews, cheats, trailers.
- -> %: reviews, score, pc, metacritic.

Topic: stephen_king. Nodes: 157 Edges: 527. Characteristic path length: 3.49. Global clustering coefficient: 0.49. Mean cluster length (arithmetic): 43.5. Mean cluster length (harmonic): 36.45. Mean node degree: 6.71. Number of clusters: 2 Tuples gained through merging: 0.

Sense inventory:

-> novel: film, book, horror, series.

-> short: story, collection, stories.

Limitations

- Most recent & state-of-the-art work is on SemEval Task 13 (induction of senses for polysemous verbs, adjectives and nouns from WordNet).
- We could get our hands on the test queries, but not the gold test sense sets.³
- We can report a relative gain compared to Hyperlex on this task, but not much more.
- The coöccurence graphs still encoded textual similarities, not entity-conceptual similarities.

³If someone still has that somewhere lying around, we would be happy to send you our clustering and we'll publish the results to Gitlab.

Thanks!

Slides, resources and contact info:

@ victor.zimmermann@uni-leipzig.de

✤ gitlab.com/axtimhaus

@dieaxtimhaus

- J. Véronis, "Hyperlex: Lexical cartography for information retrieval,"
 Computer Speech & Language, vol. 18, no. 3, pp. 223–252, 2004. [Online].
 Available: https://doi.org/10.1016/j.csl.2004.05.002.
- [2] W. L. Hamilton, K. Clark, J. Leskovec, and D. Jurafsky, "Inducing domain-specific sentiment lexicons from unlabeled corpora," in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, 2016, pp. 595–605. [Online]. Available: http://aclweb.org/anthology/D/D16/D16-1057.pdf.

- [3] C. Biemann, "Chinese whispers an efficient graph clustering algorithm and its application to natural language processing problems," in *Proceedings of TextGraphs: the First Workshop on Graph Based Methods for Natural Language Processing*, New York City: Association for Computational Linguistics, Jun. 2006, pp. 73–80. [Online]. Available: https://aclanthology.org/W06-3812.
- [4] R. Navigli and G. Crisafulli, "Inducing word senses to improve web search result clustering," in Proceedings of the 2010 conference on empirical methods in natural language processing, 2010, pp. 116–126.

- [5] R. K. Amplayo, S.-w. Hwang, and M. Song, "Autosense model for word sense induction," in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 6212–6219.
- J. Wang, M. Bansal, K. Gimpel, B. D. Ziebart, and C. T. Yu, "A sense-topic model for word sense induction with unsupervised data enrichment," *Transactions of the Association for Computational Linguistics*, vol. 3, pp. 59–71, 2015.
- [7] A. Amrami and Y. Goldberg, "Towards better substitution-based word sense induction," *arXiv preprint arXiv:1905.12598*, 2019.
- [8] M. E. J. Newman, "The structure and function of complex networks," SIAM REVIEW, vol. 45, pp. 167–256, 2003.

- [9] J. H. Fowler, "Turnout in a small world," The social logic of politics: Personal networks as contexts for political behavior, vol. 269, 2005.
- [10] R. Tripodi and M. Pelillo, "A game-theoretic approach to word sense disambiguation," *Computational Linguistics*, vol. 43, no. 1, pp. 31–70, 2017.
- [11] D. Ustalov, A. Panchenko, and C. Biemann, "Watset: Automatic induction of synsets from a graph of synonyms," in *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, Vancouver, Canada: Association for Computational Linguistics, Jul. 2017, pp. 1579–1590. [Online]. Available: https://aclanthology.org/P17-1145.

- J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling salesman problem," *Proceedings of the American Mathematical Society*, vol. 7, no. 1, pp. 48–50, 1956, ISSN: 00029939, 10886826.
 [Online]. Available: http://www.jstor.org/stable/2033241.
- [13] C. Biemann, "Chinese whispers-an efficient graph clustering algorithm and its application to natural language processing problems," in *Proceedings of TextGraphs: the first workshop on graph based methods for natural language processing*, 2006, pp. 73–80.