A working man's merge

Evidence for restricted distributional composition in phrase semantics

Victor Zimmermann^{1,2} ¹Institute of Linguistics, Leipzig University ²Neuromorph Information Processing, ibid.

73. Stuts, Frankfurt (Main) Saturday, 27th May 2023 • *RQ 1*: How are phrases constructed in a high-dimensional semantic space?

Preliminary summary

- *RQ 1*: How are phrases constructed in a high-dimensional semantic space?
- Competing representations:
 - Complex trained weight-distributions at intermediary layers between word embeddings and sentence task output (master thesis).
 - Naïve summation of constituent representations.

Preliminary summary

- *RQ 1*: How are phrases constructed in a high-dimensional semantic space?
- Competing representations:
 - Complex trained weight-distributions at intermediary layers between word embeddings and sentence task output (master thesis).
 - Naïve summation of constituent representations.
- *RQ 2:* Is there a (simple) composition function and if yes, how many?

Preliminary summary

- *RQ 1:* How are phrases constructed in a high-dimensional semantic space?
- Competing representations:
 - Complex trained weight-distributions at intermediary layers between word embeddings and sentence task output (master thesis).
 - Naïve summation of constituent representations.
- *RQ 2:* Is there a (simple) composition function and if yes, how many?
- Mediating approach: learning to predict selection of simple composition functions instead of composition output.

- Talk about representation and semantics with you.
- Give a sketch of how to do theoretical linguistics computationally, despite everything.
- Share the pain of writing a thesis.

Section 1 Composition, distribution & representation

73. Stuts, Frankfurt (Main) Saturday, 27th May 2023

The texture of composition

What is (semantic) composition?

What is (semantic) composition?

• Semantic composition mirrors syntactic structure.

The texture of composition

What is (semantic) composition?

- Semantic composition mirrors syntactic structure.
- Distributional semantics approximates word meaning from word distributions.
 - Efficient vector encoding of coöccurence matrices (like *.jpeg*, but for word contexts).

The texture of composition

What is (semantic) composition?

- Semantic composition mirrors syntactic structure.
- Distributional semantics approximates word meaning from word distributions.
 - Efficient vector encoding of coöccurence matrices (like *.jpeg*, but for word contexts).
- No natural mapping relation from distributional semantics to formal semantics.pause

Why use approximations?

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

• All models are wrong.¹

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

• All models are wrong.¹

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.
 - The brain does not run on matrix multiplication.

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.
 - The brain does not run on matrix multiplication.

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.
 - The brain does not run on matrix multiplication.
 - But: statistical models eventually approach the correct input-output mapping.

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.
 - The brain does not run on matrix multiplication.
 - But: statistical models eventually approach the correct input-output mapping.
- Only feature-based semantics approach that can be induced from large-scale data (see also the Generative Lexicon).

¹Box, G. E. P. (1976) 'Science and statistics'.

Why use approximations?

- All models are wrong.¹
 - We have no idea how semantics *actually* works.
 - The brain does not run on matrix multiplication.
 - But: statistical models eventually approach the correct input-output mapping.
- Only feature-based semantics approach that can be induced from large-scale data (see also the Generative Lexicon).
- Interfaces nicely with other vague, hand-wavy models like neural networks.

¹Box, G. E. P. (1976) 'Science and statistics'.

Putting lipstick on a pig

Assumptions for this approach:

Assumptions for this approach:

• Word embeddings are close enough to featural descriptions of lexical items to be useful for compositional semantics.

Assumptions for this approach:

- Word embeddings are close enough to featural descriptions of lexical items to be useful for compositional semantics.
- Representations of phrases are close enough to representations of lexical items to be approximated in the same vector space.

Assumptions for this approach:

- Word embeddings are close enough to featural descriptions of lexical items to be useful for compositional semantics.
- Representations of phrases are close enough to representations of lexical items to be approximated in the same vector space.
- There is a function or set of functions that describe the mapping from constituent representations to phrase representations.

Section 2

Compositional phrase embeddings from latent Tree-LSTM representations

73. Stuts, Frankfurt (Main) Saturday, 27th May 2023

Motivation:

Motivation:

• Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.

Motivation:

- Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.
- Computational phrase semantics understudied since end-to-end approaches lack syntax.

Motivation:

- Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.
- Computational phrase semantics understudied since end-to-end approaches lack syntax.

Approach:

Motivation:

- Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.
- Computational phrase semantics understudied since end-to-end approaches lack syntax.

Approach:

• Use tree-structured recurrent neural network to force latent phrasal representations.

Motivation:

- Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.
- Computational phrase semantics understudied since end-to-end approaches lack syntax.

Approach:

- Use tree-structured recurrent neural network to force latent phrasal representations.
- Probe phrase representations for semantic properties.

Motivation:

- Many uses for phrasal representations in alignment tasks like coreference and text reuse detection.
- Computational phrase semantics understudied since end-to-end approaches lack syntax.

Approach:

- Use tree-structured recurrent neural network to force latent phrasal representations.
- Probe phrase representations for semantic properties.
- Use phrase embeddings in downstream tasks.

Tree-LSTM

²Ellie Pavlick, et al. (2015) 'PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification'

• Predict embedding of left child node from right child node.

²Ellie Pavlick, et al. (2015) 'PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification'

• Predict embedding of left child node from right child node.

Paraphrase classification (supervised):

²Ellie Pavlick, et al. (2015) 'PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification'

• Predict embedding of left child node from right child node.

Paraphrase classification (supervised):

• Phrasal data from the Paraphrase Database (PPDB)².

²Ellie Pavlick, et al. (2015) 'PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification'

• Data set preparation: Splits, label extraction.

- Data set preparation: Splits, label extraction.
- CCG parser [1].

- Data set preparation: Splits, label extraction.
- CCG parser [1].
- NLTK tree parser & Chomsky Normal Form.

- Data set preparation: Splits, label extraction.
- CCG parser [1].
- NLTK tree parser & Chomsky Normal Form.
- Tree-linearisation.

- Data set preparation: Splits, label extraction.
- CCG parser [1].
- NLTK tree parser & Chomsky Normal Form.
- Tree-linearisation.
- Word embeddings [2], 300d.

- Data set preparation: Splits, label extraction.
- CCG parser [1].
- NLTK tree parser & Chomsky Normal Form.
- Tree-linearisation.
- Word embeddings [2], 300d.

- Sister node regressors: σ
- Paraphrase classifier: *ReLU*
- Filter classifier: *tanh*

Section 3 Limiting unlimited composition.

73. Stuts, Frankfurt (Main) Saturday, 27th May 2023 What if we don't need to learn the composition function?

What if we don't need to learn the composition function?

• Hard: find n-dimensional, complex mapping between two input and one output vector for a given task.

What if we don't need to learn the composition function?

- Hard: find n-dimensional, complex mapping between two input and one output vector for a given task.
- Maybe easier: select function from a list of simple functions to approximate complex mapping.

• Build model as before, with sweat, blood and computing hours.

- Build model as before, with sweat, blood and computing hours.
- Attach a cute little classifier to the cell input and output.

- Build model as before, with sweat, blood and computing hours.
- Attach a cute little classifier to the cell input and output.
- Rank functions by similarity to output of complex classifier.

- Build model as before, with sweat, blood and computing hours.
- Attach a cute little classifier to the cell input and output.
- Rank functions by similarity to output of complex classifier.
- Train classifier on function rankings.

ht

Results

73. Stuts, Frankfurt (Main) Saturday, 27th May 2023 Results

• Struggling with data handling: trying a lot of different parsers and datasets and I get different results.

- Struggling with data handling: trying a lot of different parsers and datasets and I get different results.
- Sister node prediction hard to evaluate.

- Struggling with data handling: trying a lot of different parsers and datasets and I get different results.
- Sister node prediction hard to evaluate.
- Not sure about motivation for parasite network, except "argmax hard".

- Struggling with data handling: trying a lot of different parsers and datasets and I get different results.
- Sister node prediction hard to evaluate.
- Not sure about motivation for parasite network, except "argmax hard".
- What am I even saying about linguistics?

- Struggling with data handling: trying a lot of different parsers and datasets and I get different results.
- Sister node prediction hard to evaluate.
- Not sure about motivation for parasite network, except "argmax hard".
- What am I even saying about linguistics?
- Barely in control of the maths.