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Preliminary summary 1

• RQ 1: How are phrases constructed in a high-dimensional semantic space?

• Competing representations:
• Complex trained weight-distributions at intermediary layers between word

embeddings and sentence task output (master thesis).
• Naı̈ve summation of constituent representations.

• RQ 2: Is there a (simple) composition function and if yes, how many?

• Mediating approach: learning to predict selection of simple composition
functions instead of composition output.
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What I want to do in this talk. 2

• Talk about representation and semantics with you.

• Give a sketch of how to do theoretical linguistics computationally, despite
everything.

• Share the pain of writing a thesis.
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Section 1

Composition, distribution
& representation
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The texture of composition 3

What is (semantic) composition?

• Semantic composition mirrors syntactic structure.

• Distributional semantics approximates word meaning from word
distributions.

• Efficient vector encoding of coöccurence matrices (like .jpeg, but for word
contexts).

• No natural mapping relation from distributional semantics to formal
semantics.pause
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Distributional compositional semantics 4

Why use approximations?

• All models are wrong.1

• We have no idea how semantics actually works.
• The brain does not run on matrix multiplication.
• But: statistical models eventually approach the correct input-output mapping.

• Only feature-based semantics approach that can be induced from large-scale
data (see also the Generative Lexicon).

• Interfaces nicely with other vague, hand-wavy models like neural networks.

1Box, G. E. P. (1976) ’Science and statistics’.
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Putting lipstick on a pig 5

Assumptions for this approach:

• Word embeddings are close enough to featural descriptions of lexical items
to be useful for compositional semantics.

• Representations of phrases are close enough to representations of lexical
items to be approximated in the same vector space.

• There is a function or set of functions that describe the mapping from
constituent representations to phrase representations.
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Thesis outline 6

Motivation:

• Many uses for phrasal representations in alignment tasks like coreference
and text reuse detection.

• Computational phrase semantics understudied since end-to-end approaches
lack syntax.

Approach:

• Use tree-structured recurrent neural network to force latent phrasal
representations.

• Probe phrase representations for semantic properties.

• Use phrase embeddings in downstream tasks.
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Tree-LSTM 7
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Prediction tasks & data 8

Sister node prediction (unsupervised):

• Predict embedding of left child node from right child node.

Paraphrase classification (supervised):

• Phrasal data from the Paraphrase Database (PPDB)2.

2Ellie Pavlick, et al. (2015) ’PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations,
word embeddings, and style classification’
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Preprocessing & model parameters 9

• Data set preparation: Splits, label
extraction.

• CCG parser [1].

• NLTK tree parser & Chomsky
Normal Form.

• Tree-linearisation.

• Word embeddings [2], 300d.

• Sister node regressors: σ

• Paraphrase classifier: ReLU

• Filter classifier: tanh
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Limiting unlimited composition.

73. Stuts, Frankfurt (Main)
Saturday, 27

th May 2023



Taking the easy way out 10

What if we don’t need to learn the composition function?

• Hard: find n-dimensional, complex mapping between two input and one
output vector for a given task.

• Maybe easier: select function from a list of simple functions to approximate
complex mapping.
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Parasitic composition 11

How to build an embedding engine that works smarter, not harder.

• Build model as before, with sweat, blood and computing hours.

• Attach a cute little classifier to the cell input and output.

• Rank functions by similarity to output of complex classifier.

• Train classifier on function rankings.
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Parasitic composition (cont.) 12
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Results 13
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Where I’m at. 14

• Struggling with data handling: trying a lot of different parsers and datasets
and I get different results.

• Sister node prediction hard to evaluate.

• Not sure about motivation for parasite network, except “argmax hard”.

• What am I even saying about linguistics?

• Barely in control of the maths.
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