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Abstract

This work presents the first application of a neural network architecture to the task

of comparative anaphora resolution. To this end, a corpus of 512 in-text samples

of nominal and named entity antecedents from multiple domains was created, as

well as an automatically collected corpus of 3825 coreference mention pairs for

pre-training.

Relevant terms and concepts of anaphora and recurrent neural networks, as well

as related work in the field of anaphora resolution are introduced.

Two hypotheses are tested using a BiLSTM and the new comparative anaphora

corpus: (1.) The semantic properties of word embeddings should encode the

information relevant to the non-trivial (i.e. non-syntactic) samples in the test

set. (2.) Since other anaphora resolution fields provide larger data sets than

the comparative anaphora task, the similarity between tasks can be employed to

pre-train a model before fine-tuning on the main task.

The experiments performed with this setup largely suffer from the size of the

test data, even with cross-validation, as less data leads to higher thresholds for

significance. However, all naïve baselines were surpassed by multiple tested models

by a significant margin, building a solid neural baseline for future systems.

The provided error analysis does give insights into how a mixed-domain corpus

affects the success rate, as well as the impact of implicit classification constraints.
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Abriss

Diese Arbeit präsentiert die erste Anwendung einer neuronalen Netzwerkarchitek-

tur für die Aufgabenstellung der komparativen Anaphorikresolution. Zu diesem

Zwecke wurde ein Korpus, bestehend aus 512 textinternen Beispielen von nomi-

nalen und Eigennamen-Antezedenten, sowie ein maschinell aggregiertes Korpus

aus 3825 koreferenten Erwähnungspaaren zum Vortraining, erstellt.

Relevante Begriffe und Konzepte der Anaphorik, rekurrenter neuronaler Netze,

sowie der verwandten Arbeiten im Gebiet der Anaphorikresolution werden einge-

führt.

Zwei Hypothesen werden mittels eines bidirektionalen Langkurzzeitgedächtnis-

netzwerkes und des neuen komparativen Anaphorikkorpus geprüft: (1.) Die

semantischen Eigenschaften von Worteinbettungen sollten für nicht-triviale (d.h.

nicht-syntaktische) Beispiele im Testdatensatz relevante Informationen encodieren.

(2.) Aufgrund der Tatsache, dass andere Gebiete der Anaphorikresolution größere

Datensätze zur Verfügung stellen, kann die Ähnlichkeit der Aufgabenstellungen

genutzt werden, um ein Modell vorzubilden, ehe es für die Hauptaufgabenstellung

feineingestellt wird.

Die mit dieser Konfiguration durchgeführten Experimente leiden größtenteils unter

der Menge der Testdaten, selbst mit Kreuzvalidierung, da weniger Daten zu einer

höheren Signifikanzschwelle führen. Indessen konnten sämtliche naiven Vergle-

ichssysteme von mehreren getesteten Modellen geschlagen werden, was sie als

solide neuronale Vergleichsysteme für zukünftige Experimente auszeichnet.

Die vorliegende Fehleranalyse gewährt Einblicke in den Einfluss eines Korpus ver-

schiedener Domänen auf die Erfolgsrate, wie auch die Auswirkung von impliziten

Klassifikationseinschränkungen.
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1. Introduction

This work deals with the resolution of comparative anaphora using a neural archi-

tecture. To this purpose I collected a data set of 512 samples of in-text comparative

anaphora relations, with the heads of both anaphor and all possible (candidate)

antecedents annotated. The system uses word embeddings and a long short-term

memory network (LSTM) to embed words within their context and returns the

index of the most likely antecedent out of a list of possible antecedents given the

anaphor index. I also assess the impact of pre-training on data extracted automat-

ically from the related coreference resolution task, for which previous work has

made more sizeable corpora available. Each system is evaluated against three naïve

baselines.

Comparative anaphora resolution, as used in this thesis, refers to the identifica-

tion of antecedents to referential noun phrases with non-pronominal heads and

comparative modifiers.1

The ship is in the harbour now, see if you can spot him.

Another immigrant, comin’ up from the bottom.

In the example above, another immigrant is referring to him, but (in-text) possible

antecedents also include the ship, the harbour or you. Deciding which of these

phrases is the true antecedent can be considered the resolution task. This thesis

deals with non-trivial instances of comparative anaphora. The mention pruning

therefore largely mirrors Modjeska (2003): Syntactic antecedents (i.e. other-than

and list constructions) have been discarded for this task, as their identification can

be solved on a syntactic, rather than a semantic basis. Idiomatic expressions have

also been discarded, as have been reciprocal expressions (e.g. “each other”) and

phrases referring to previous discourse (e.g. “in other words”). As a consequence

the data set presented here largely concerns itself with nominal and pronominal

antecedents, with some few samples of cardinal numbers and adjectives. Com-

parative anaphors can of course also refer to verbal phrases (e.g. “He biked to

Hanoi. Other vehicles were available.”), although this is infrequent and was not

annotated for this task. The task only considers antecedents within the same or

1Any concrete realisation of comparative anaphora hereafter is referred to as anaphor (pl.
anaphors), while the term anaphora is used when referring to the concept of anaphora at
large.
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1. Introduction

preceding sentence, which is due to logistic limitations and in line with previous

setups (Modjeska, 2003). The process of corpus creation is discussed in more detail

in Section 4.

Formally the task can be defined as follows: For an anaphor a with its head at index

ia, find index ic̄ of any true antecedent c̄ ∈ C̄a, with set of true antecedent entity

mentions C̄a ⊆ Ca, from set of candidate antecedents Ca.

Comparative anaphora resolution is closely tied to other forms of anaphora resolu-

tion, notably metonymy (Markert and Hahn, 2002). It stands to reason, that more

understanding of a task where bridging, metaphor and metonymy have a high

impact, like comparative anaphora resolution, can also lead to more understanding

in these fields.

Question and answering systems that accept unrelated queries are one application

for comparative anaphora resolution, as users may ask for other information on a

previous subject, like in normal conversation:

Q: How many articles are there in the Federalist Papers?

A: 85 articles.

Q: How many did Jay and Madison write?

A: John Jay got sick after writing five. James Madison wrote twenty-

nine.

Q: Who wrote the other fifty-one?

This last question requires the system to understand that fifty-one refers to the sub-

set of the Federalist Papers that were not written by John Jay and James Madison,

which was mentioned by name only two questions ago.

Comparative anaphors can also encode new information, e.g. in the phrase “Wash-

ington and other presidents”. Here the anaphor introduces the information that

Washington is a president, which can be utilised for information extraction. Of

course, if the antecedent is not linked to the anaphor like in this example, resolving

the anaphor often becomes dependent on knowing the relation beforehand. “He

talked to Washington. Other presidents where more reclusive.” can only be resolved

with prior knowledge.

In this thesis the following hypotheses are explored: (1.) Since the comparative

anaphora resolution task, as evaluated on the corpus presented here, focuses on

the resolution of relationships that require semantic or world knowledge, a feature

conveying semantic information, like the word embeddings used as input for the

neural systems in this thesis, should perform well. (2.) Because deep learning

techniques require large data sets to train, pre-training on tasks with more data

2



1. Introduction

available could be a method to circumvent the data sparsity problem encountered

in niche subjects.

I that multiple neural models, given enough data, outperform all three baselines

significantly. However, because of the limited data size, a significant difference

between the systems could not be established. It should be highlighted that the

system trained only on data extracted from coreference samples performed reason-

ably well, considering it has not seen any actual comparative anaphora data during

training.

Section 3 highlights the related work in comparative anaphora resolution, as well

as other anaphora resolution tasks like coreference resolution or bridging, following

which Section 2 provides a brief review of the theoretical background of the systems

used for the resolution task. The data used for training is described in Section 4

with details on the annotation process and the extraction of pre-training samples.

The system itself is discussed in-depth in Section 5 and evaluated in Section 6. A

summary and conclusion of the presented work is given in Section 7 and finally

further venues for research on this topic are discussed in Section 8.

3



2. Theoretical Background

2.1. Anaphora
Anaphora describes the dependence of two discourse elements, of which one, the

anaphor can only be interpreted fully in context of the antecedent. Consider the

following example:

The measure will end 20 years of review, and guarantees China the low

tariffs almost all other nations receive.

Almost all other nations needs the antecedent China to be coherent, as it is defined

by the exclusion of one particular nation.

One well studied subsection of anaphora resolution is coreference (Carter, 1987;

Deemter and Kibble, 2000). Two mentions are said to be coreferent if both refer to

the same global entity.

The package was termed excessive by the Bush administration , but it
also provoked a struggle with influential California lawmakers [...].

It is coreferent with the package, but the Bush administration is syntactically also

possible. Coreference and comparative anaphora are related in the fact that both

mentions are connected by some sort of similarity, for coreference, mentions are

similar in the fact that they share the same entity. In comparative anaphora both

mentions are members of the same group. This is most evident for other-anaphora,

since the shared group is most often spelled out in the anaphor. China and other
nations both are subsets of some nation group.

Another major subset of anaphora resolution research was done in the field of bridg-

ing resolution. Bridging as a whole refers to discourse-new anaphora dependent on

previous context. Bridging, albeit differently defined by different researchers, can

be broken down into two sub-tasks (Baumann, 2012; Roesiger et al., 2018). Refer-
ential bridging refers to cases where the anaphor is dependent on an antecedent to

be coherent.

The linguistics lecture is delivered by an external researcher. The reading
list will be made available shortly.

Without the context of a university lecture, it is not clear what exactly the reading

list is referring to. Comparative anaphora almost always falls into this definition

4



2. Theoretical Background

and can be considered part of referential bridging.

On the other hand, lexical bridging, as defined by Baumann (2012) refers to

meronymy, hyponymy and other lexical semantic relations, where the mentions

stand in some kind of conceptual relation.

The parliament voted against the motion, much to the delight of the
opposition.

It is often the case, as in the example above, that both referential and lexical

bridging appear for the same mention pair, although both bridging notions express

different concepts. It is evident from the part-whole relationship between opposition
and parliament that the opposition within said parliament is referenced. There

is at once the lexical relation that the opposition, as part of parliament voted on

the motion, as well as the referential relation that the opposition belongs to this
parliament.

2.2. Neural Machine Learning

2.2.1. Feedforward Neural Network

Feedforward neural networks (FFNNs) are statistical models that ostensibly mimic

the makeup of the human brain by chaining multiple layers of perceptrons (Rosen-

blatt, 1958), which allows the neural network to solve non-linear problems like the

XOR-Problem (Goodfellow et al., 2016). With vector representations (see Section

2.2.4) these models have successfully been employed in nearly every field of natural

language processing (NLP), including coreference (Section 3.1.2) and bridging

resolution (Section 3.1.3).

FFNNs build on the regression model of a standard perceptron and expand it

through hidden layers of neurons, which are just perceptrons with associated input,

weights and output vectors. Instead of calculating the output from the input directly,

each neuron’s output is further fed into the next layer as input, thus in a standard,

fully-connected FFNN a neuron’s hidden state is calculated from the output of the

previous layer’s hidden states multiplied by the neuron’s weight vector. Each layer

is usually equipped with an activation function, which normalises the output of

each neuron. The activation functions relevant to the works discussed here are

listed in Table 1.

The full process outlined above is what is referred to as a forward pass, a side effect

of which is that the whole process can be expressed as a series of matrix operations.

This allows us to express the states of a hidden layer h as the matrix product of its

5



2. Theoretical Background

weights ω and the input vector x (as well as some bias b and activation function σ):

h = σ(ω · x+ b)

A cell’s input is not dependent on its output, hence why this architecture is called

feedforward.

Name Function Derivative

Sigmoid f(x) = 1
1+e−x

∂f(x)
∂x

= f(x)(1− f(x))

Tanh f(x) = ex−e−x

ex+e−x

∂f(x)
∂x

= 1− f(x)2

Softmax f(x)i = exi∑|x|
j=1 e

xj
for i = 1, ..., |x| ∂f(x)i

∂xj
= f(x)i(δij − f(x)j)

Table 1: Activation functions referenced in this thesis, as well as their derivatives,

with Kronecker delta δij2.

The weight matrix for each layer is updated through a process called backward dif-

ferentiation, which in the case of neural networks is referred to as back-propagation

(Rumelhart et al., 1986). Back-propagation is largely based on the chain rule from

differential calculus, applied to a loss function. More specifically one needs to

calculate the partial derivative of the loss function with respect to each parameter.

As the computation of each hidden layer is entirely based on the previous layer, this

can be expressed as such a chain calculation. For example, for a two-layer neural

network with weight matrices ω1,2,3, the calculation of the output ỹ from input x,

with activation functions σ, ς may look like this:

h1 = σ(ω1 · x+ b1)

h2 = ω2 · h1 + b2

ỹ = ς(h2)

⇔ ỹ = ς(ω2 · σ(ω1 · x+ b1) + b2)

In most modern frameworks for deep learning architectures, each function is imple-

mented with its own derivative function. In a process called auto-differentiation a

stack of all called functions during the forward pass is kept and the updates applied

accordingly. Before each parameter can be updated, we need to define a loss

function (L(ỹ, y)) over the output, and a learning rate (λ). The goal in choosing

2δij =

{
0 if i 6= j,
1 else.

6



2. Theoretical Background

a loss function is to approximate how close the network output is to the desired

result. The learning rate dampens the impact of each update, ideally prohibiting

over-correction. The general update function for a parameter ω can therefore be

defined as:

ωnew = ωold −
∂L(ỹ, y)

∂ωold

· λ

This is done iteratively over multiple training samples. Each cycle over the training

data is called an epoch. Bundling samples and applying average weight updates is

called mini batch gradient descent, the number of samples bundled is also a meta

parameter, batch size. This is a compromise between stochastic gradient descent,

where an update is applied after each sample, and batch gradient descent, where

the gradient is calculated over the entire data set and an update is applied once

per epoch.

2.2.2. Recurrent Neural Networks

Recurrent neural networks (RNNs) borrow many concepts from FFNNs, with the no-

table exception that a cell is impacted by previous outputs beyond back-propagation.

This recurrence allows neural networks using a variant of this architecture to model

time-dependent variables. In its most basic version (Elman, 1990), RNNs feed the

hidden layer ht−1 of the previous time step as input into the current hidden layer

ht, as is shown in Figure 1.

Figure 1: Simple Elman RNN. In addition to each time step input xt, the previous

hidden state ht−1 is used to calculate the system output ỹ at t.

Forward inference is handled in a similar manner to a FFNN, with previous hidden

state ht−1, weight vectors υ, ν and ω, and activation functions σ and ς:

ht = σ(ν · ht−1 + ω · xt)

ỹt = ς(υ · ht)

7



2. Theoretical Background

Note that the output function also features an additional weight vector, which helps

to deal with the 2-ary function of the hidden state to both inform the next cell and

provide an output at time step.

When it comes to back-propagation, this 2-ary function presents a problem, as not

only the output at the current time step produces an error, which has to be applied,

but also every following cell. The error term δ, i.e. how much of the loss can be

attributed to a particular parameter, for each hidden state can be stated as the

sum of each function’s error rate, with cell state z, before applying an activation

function:

δout = L′σ′(z)

δh = σ′(z) · υ · δout + δnext

Updating the output’s weight function υ only requires the error rate δout, as it is not

fed any previous cell state.

Each weight matrix can thus be updates as follows:

∂L

∂υ
= δout · ht

∂L

∂ν
= δh · xt

∂L

∂ω
= δh · ht−1

Just like with FFNNs, updates can be applied using the call stack and moderated

using a learning rate.

2.2.3. (Bidirectional) Long Short-Term Memory

For the general neural network architecture, activation functions are usually se-

lected for a specific task. For LSTMs the sigmoid and hyperbolic tangent (tanh)

functions are employed for their definitional properties, so for the following sec-

tions, σ and ς no longer denote arbitrary activation functions, but the sigmoid and

tanh function respectively.

A major weakness of the standard RNN architecture are long-distance dependencies,

as each cell state is modified by the following cells and gets more mangled the

more cells it passes. One approach to not lose the information from the start of

a sentence, is to run the network both ways, making it a bidirectional RNN (see

Figure 2). For classification, the cell states of the left-to-right and the right-to-left

RNN are combined. The combined cell states are especially helpful when the whole

8



2. Theoretical Background

input, e.g. a tokenised sentence or a multi-token span, needs to be classified. In

this case, the last cell state of each directed RNN is concatenated and passed to the

classifier.

Figure 2: A bidirectional RNN. Input at time step is passed into two RNNs doing

their forward passes in opposite directions. The outputs are concatenated

and used for classification.

With this extended architecture it becomes even more useful that the output is

given its own weight vector and activation function, as the input for calculating ỹt
no longer solely depends on one cell state ht, but two.

Still, with bidirectionality, RNNs perform poorly on long-dependency tasks. The

two main extensions of the core RNN architecture, LSTMs (Hochreiter and Schmid-

huber, 1997) and gated recurrent units (GRUs) by Cho et al. (2014) try to deal

with this issue by expanding the cell through a more complex internal structure.

We will only look at the LSTM cell, as the GRU architecture is basically a simplified

LSTM.
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2. Theoretical Background

Figure 3: A standard RNN cell. Each cell behaves like layer in a FFNN, but sharing

weights and activation functions.

For RNNs, the cell provides little more than an activation function, tanh in the case

of Figure 3. The added complexity becomes apparent when looking at the bowels

of the LSTM cell in Figure 4. Here so called gates allow the network to remember,

but also to forget certain information. Each gate consists of a sigmoid neural layer

and a pointwise multiplication operation. The 2-ary functionality of the hidden

state and new input in RNNs is now split between cell and hidden state. Both are

still given to the the following cell as input, but they serve a different purpose. The

cell state is constructed to convey long-term information, while the hidden state

represents the cell’s output, as before.
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Figure 4: An LSTM cell after Hochreiter and Schmidhuber (1997). Sigmoid func-

tions and multiplication operators make up so-called gates. Within the

cell, circles denote element-wise operators, squircles indicate single-layer

neural networks, converging arrows concatenations and diverging arrows

multiple recipients of the same vector (i.e. copying).

The forget gate ft selects information to be forgotten, given the input vector xt and

previous hidden state ht−1. To this effect a sigmoid layer σ (i.e. mapping states to

values between 0 to forget, and 1 to keep) is applied to this concatenated input

and the result multiplied with the cell state ct, with weight matrices ω, υ:

ft = σ(ωf xt + υf ht−1 + bf )

New information is passed through the input gate it, which selects the values to

modify, with a tanh layer σ forcing the values to lie between -1 and 1. The product

is then added to the cell state3:

it = σ(ωixt + υiht−1 + bi)

ct = ft ◦ ct−1 + it ◦ ς(ωcxt + υcht−1 + bc)

Finally, the output gate ot selects the information from the cell state to be output as

the hidden state. An element-wise tanh function is applied to the cell state values

beforehand for normalisation:

ot = σ(ωoxt + υoht−1 + bio)

ht = ot ◦ ς(ct)

3The operator ◦ marks an element-wise product.
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As with RNNs, the LSTM can be run in both directions concurrently, which is ac-

cordingly referred to as a bidirectional long short-term memory network (BiLSTM).

As the LSTM structure only affects the internal makeup of the cell, outputs from

both directionalities can be concatenated and used to the same effect as before.

The model presented in this thesis uses a BiLSTM network with a multi-layer FFNN

as scoring function.

2.2.4. Vector Semantics & Embeddings

The central concept behind vector semantics can be traced back to Ludwig Wittgen-

stein, who claimed in his Philosophical Investigations (Wittgenstein, 2015):

Der Gebrauch des Wortes in der Sprache ist seine Bedeutung.

This general notion that a word is not the product of a logical definition, but

shaped by its use, and as a result, context, was later formalised by Joos (1950),

Harris (1954) and Firth (1957) as the distributional hypothesis. According to

distributional semantics, a word can be defined through its distribution of the

contexts it appears in.

In computational linguistics, this concept was later developed into a multitude

of word embeddings, each aiming to quantify the contexts of a word through

a mathematical vector representation. The simplest approach to calculate word

vectors is a bag of words (BoW) method, where the other tokens within a certain

window of every occurrence of a word are counted and put in a vector. Many

n-gram models and measures like term frequency–inverse document frequency

(tf-idf) (Salton and McGill, 1986), but also complex embeddings like Word2vec

(Mikolov, Sutskever, et al., 2013; Mikolov, Chen, et al., 2013) and Global Vectors

for Word Representation (GloVe) (Pennington et al., 2014) are based on the BoW

foundation.

This relationship is most apparent in Word2vec’s continuous bag of words (CBOW)

model. The underlying FFNN aims to predict a word from context words within a

certain window. The other included model, skip-gram, is trained on the opposite

objective, predicting the context from a given word. The hidden states for each

token are the true product of this model, as the average over the hidden states of

each occurrence of the token in question.

Another popular approach are GloVe embeddings (Pennington et al., 2014), as

they are close in performance to Word2vec embeddings trained on similar data

and pre-trained embeddings are readily available. In contrast to Word2vec, GloVe

aims to capture global count statistics, as well as local contexts. To this end, co-
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occurrence matrices are employed, as was the case with earlier embedding methods

like latent semantic analysis (LSA), which did however not produce the same

semantic relationships that were possible to model using Word2vec (e.g. “man

is to woman and king is to queen”). GloVe is trained on predicting the ratio in

which two words co-occur. This follows the intuition that two similar words can be

expected to occur in similar contexts, which lead to similar co-occurrence ratios.

To put less importance on infrequent (i.e. noisy) words, and not to overemphasise

frequent terms (e.g. is, and, it, etc.), the following weighting function is applied to

updates:

w(x) = min(1, (x/xmax)
3
4 )

Pennington et al. use xmax = 100 as a frequency threshold, but this is obviously

dependent on the corpus size.

Newer developments involve context-dependent embeddings, where the embedding

of a word is also dependent on its context, which breaks with the dictionary-like

structure of previous embeddings. Now the whole pre-trained model has to be

employed, not just a table with tokens and corresponding embeddings. The system

with the largest impact in this domain is the transformer-based language model

presented in Devlin et al. (2019).
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3.1. Anaphora Resolution
Little work has been published on comparative anaphora resolution, specifically in

the last ten years. There is however active research in related fields of anaphora

resolution, such as coreference and bridging resolution. Methods shown to work

on these tasks should, in theory, also perform reasonably well for comparative

anaphora. In this Section previous machine learning systems and corpora for

comparative anaphora resolution (3.1.1) are discussed, as well as neural recurrent

approaches to coreference resolution (3.1.2) and work done in the field of bridging

(3.1.3), which shares some overlap with the task at hand.

3.1.1. Comparative Anaphora Resolution

Modjeska (2003) presents a similar experimental setup to the one in this work,

which is evaluated on two different data sets:

• a data set with all candidates preceding the actual antecedent removed,

• a more realistic data set, with all candidate antecedents in a two sentence

window retained.

The data set is of similar size (500 samples) as the one presented in Section 4

and similarly pruned. List- and other-than-constructions were removed and only

noun phrase (NP) antecedents considered. The samples of Modjeska’s corpus were

drawn entirely from the Wall Street Journal (WSJ) documents from OntoNotes

5. The reported ratio of candidate to actual antecedents (500 : 2584) is about

half of the 512 : 5690 split found in the data collect for this thesis. The systems

tested in Modjeska (2003) did allow multiple (or no) candidates to be classified as

antecedents and were evaluated using ten-fold cross-validation.

Crucially, Modjeska (2003) only considers “other”-anaphora, i.e. comparative

anaphora which feature other or another as comparative modifiers. The system

itself is largely based on Naïve Bayes and the semantic knowledge extraction from

the web, as suggested in Modjeska et al. (2003). Candidate relations were fed into

a search engine using the “X and other Y” list-construction, which is almost always
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indicative of an anaphoric relation (Modjeska, 2003). The number of yielded

results for each pairing was used as a feature for the Naïve Bayes classifier.

3.1.2. Coreference Resolution

Two concepts used successfully to resolve coreference are of special importance,

as they relate to this work: First, the idea of mention ranking, which lends itself

naturally to a neural solution. And of course the RNN architecture, which allows

each mention to be embedded within its own context for further classifying.

Neural networks, more specifically deep reinforcement learning, have been suc-

cessfully employed for mention ranking for coreference resolution (Clark and

Manning, 2016b; Clark and Manning, 2016a). Coreference through mention

ranking compares mentions of a document pairwise and either selects them as

coreferent, or not. Compared to partial cluster evaluation, this is a faster and

more scalable approach, and as a result became standard in coreference resolution

(Wiseman et al., 2015; Durrett and Klein, 2013). Clark and Manning (2016b) also

use a concatenated semantic embedding and feature vector as input. They use rein-

forcement learning (Williams, 1992), which is not necessary for the comparative

anaphora task, as the data provides a full supervision signal.

The end-to-end coreference resolution system presented in Lee, He, Lewis, et

al. (2017) and Lee, He, and Zettlemoyer (2018) uses a BiLSTM to create a span

representation, which in turn is fed into a scoring function. A very similar archi-

tecture has later been used for semantic role labelling (He et al., 2018), proofing

an adaptability to different tasks. In contrast to this thesis, Lee, He, Lewis, et al.

were also challenged with the task of selecting candidate spans. In their end-to-end

coreference system, each span was represented by the first and last BiLSTM output,

as well as an attention vector that models some form of “headiness”, i.e. what

part of the span most constitutes its head, and a feature vector with domain and

distance information. Each mention is paired with multiple other mentions, as well

as a null-class, which is meant to be predicted if no mention is coreferent with the

anaphor.

3.1.3. Bridging

Some data sets have been created for bridging resolution, most notably ISnotes

(Markert, Hou, et al., 2012; Hou et al., 2013), which provides fine-grained an-

notations for information status and bridging relations for 50 documents from

OntoNotes’ WSJ corpus. Because documents were selected for the bridging resolu-

tion task at large, ISnotes includes only about 100 samples of in-text comparative
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anaphora with nominal antecedents.

The ARRAU corpus (Poesio, Artstein, et al., 2008; Poesio, Grishina, et al., 2018;

Uryupina et al., 2018) does provide a multitude of anaphoric annotated text, but

unfortunately comparative anaphora is not marked individually, but only as part

of bridging anaphora. The BASHI corpus Rösiger (2018) consists of further 459

bridging samples from the WSJ corpus, 70 of which can be classified as comparative

anaphora. Most bridging research is contained to the ISnotes and ARRAU corpora,

making OntoNotes’ WSJ corpus the de-facto benchmark for bridging resolution, as

OntoNotes as a whole has become for coreference resolution.

Rösiger et al. (2018) include a neural relation classifier in their re-implemented

rule-based systems for bridging (Hou et al., 2014) and coreference resolution

(Björkelund and Kuhn, 2014). In Roesiger et al. (2018) the comparative anaphora

task is explicitly excluded, as their system is not able to predict split antecedents,

which frequently appear in list-constructions (e.g. “Libya, Sudan and other coun-

tries”).

3.1.4. Pre-Training

Only tangential work exists for the impact of pre-training on anaphora resolution

tasks. One related task, where pre-training did have a positive impact, is Chinese

zero pronoun resolution. Zero pronouns refer to gaps in sentences that are coref-

erent with an entity, which is providing context for understanding that gap. Liu

et al. (2017) generate pseudo training data from randomly creating gaps for nouns

and pronouns. This pre-training setup is highly similar to reading comprehension

tasks, which is why the authors choose to employ a neural network model used

previously on that task. Yin et al. (2018) are pre-training their zero pronoun

resolution system on coreference data, but only go into little detail on the exact

setup.

Pre-training is a common technique in reinforcement learning, which is why Clark

and Manning (2016a) do employ some form of pre-training, but again do not go

into much detail on the exact parameters or impact. For modern, learning intensive

systems like Devlin et al. (2019), pre-training on an insurmountable amount of

language data has become unavoidable to achieve good performance, which led to

a rise of massive pre-trained models, which only need to be fine-tuned by the user.
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Two corpora were created specifically for this task, a manually annotated training

corpus of comparative anaphora samples, and an automatically collected pre-

training corpus from a pruned set of coreference mention pairs. The collection of

the latter will be discussed in Section 4.1.1. Sections 4.1 and 4.2 deal with the

preliminary filtering by anaphora and subsequent annotation of the samples.

All samples were collected from the OntoNotes 5 corpus and processed using the

SpaCy dependency parser.

4.1. Preprocessing & Filtering
The OntoNotes corpus already provides sentence and word tokenisation. To allow

parallel annotations, these, as well as any stop words or other fragments within the

corpus were kept to that end.

The algorithm searches documents sentence-wise for occurrences of anaphora.

Anaphora can generally be found through their unique modifiers:

• comparative adjectives, e.g. better, prettier;

• more or less in combination with an adjective, e.g. more important;

• a modifier from a closed class of adjectives, see M in Algorithm 1.

Because than-constructions generally appear more frequent than semantically

encoded anaphora, sentences containing than were cut entirely. This may have led

to some wrongful exclusions, but overall reduced annotation time considerably.

This preliminary filtering serves the main purpose of selecting documents for

annotation. The algorithm therefore is build around recall, as to not exclude

some class of anaphora by strict constraints. Notably, list-constructions had to be

excluded manually. A condition for their exclusion could be included in a future

implementation of this filter.
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M ← {other, another, similar, further, separate, comparable,
added, supplemental, different, additional, extra, supplementary}

if ¬∃ T : T.text = than ∧ T ∈ S.tokens then

for C ∈ S.noun_chunks do

if C.head.text = others then

return C

else

for T ∈ C.tokens do

if T .tag = JJR then

return C

else if T .head.text = more ∧ T .tag = JJ then

return C

else if T .head.text = less ∧ T .tag = JJ then

return C

else if T .text ∈M then

return C

else

return ∅
else

return ∅
Algorithm 1: Check sentence S for comparative anaphora. Returns noun chunk C

containing the anaphor if found, else None. M is a set of comparative modifiers not

tagged as JJR.

As running a dependency parse over the whole corpus is computationally expensive,

samples for annotation were collected one at a time, reducing the time needed for

preprocessing after changing the filtering algorithm, as well as the startup time for

the annotation tool, to a minimum. As a result, it is not possible to conclusively

say how many possible cases for annotation there are in OntoNotes 5, given the

algorithm presented above.

The head of the selected noun chunk is labelled as the anaphor head, while the

heads of all other noun chunks and named entities are marked as candidate heads.

The spans of chunks and named entitys (NEs) are retained as a feature, as well as

SpaCy’s part-of-speech (POS) annotation.

4.1.1. Pre-Training

The similarity between coreference and comparative anaphora resolution should,

in theory, share some common indicators of anaphoric relations that can be pre-

trained on a larger coreference data set and fine-tuned to the semantic relation
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between comparative antecedent and anaphora.

Coreference annotation was lifted from the CoNLL shared tasks on coreference

(Pradhan, Ramshaw, et al., 2011; Pradhan, Moschitti, et al., 2012) on the OntoNotes

data set (Pradhan, Hovy, et al., 2007). No document from the training set is in-

cluded in pre-training, and no pre-training document in training. This is done

prohibitively to not leak information.

Coreference mention spans are checked against noun chunks and named entities

from the SpaCy parser. For the pre-training data set, all coreferent mention pairs

with the antecedent immediately preceding a noun anaphor were considered. Fur-

ther constraints were also considered, but would have led to a considerable drop

in pre-training size. A more lenient span matching between noun chunks and

coreference annotation could also have led to more data, but was deemed too

prone to incorrect annotations.

The data set is created completely without human annotators, so the true quality

could only be measured by random samples and the overall model’s performance

when fed the new data.

4.2. Annotation
A custom annotation framework was built to provide a rapid annotation for the task.

Since only the head of the closest anaphoric candidate has to be annotated, and

candidates are already pre-selected through preprocessing, it suffices to number

the available candidates and communicate the corresponding number of the true

antecedent back to the system. If the true antecedent can not be found, the anaphor

is idiomatic or syntactic, or the sample is corrupted in some other way, the sample

can easily be discarded.

4.3. Analysis
As can be gathered from Table 2, the data for pre-training is slightly harder to

classify, as there are more candidates from which to choose, as well as more

distance between true antecedent and anaphor, both in terms of tokens and other

candidates.
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Train Pre-Train

Number of samples 512 3825

Mean sample length 45.1 50.2

Mean number of candidates 11.1 12.8

Mean distance in tokens 14.2 20.1

Mean candidate distance 3.7 5.5

Table 2: Quantitative statistics of Train and Pre-Train data sets. Mean candidate

distance measures the number of candidates between (and including) the

true antecedent and the anaphor.

The removal of documents already covered in the Train data mainly affects the

New Testament (NT) corpus, removing 165 documents. This is surprising when

contrasted with the WSJ corpus, where only 106 documents were removed from pre-

training, despite having the larger share of the training set. Since NT documents

tend to be much shorter than those of other corpora (see Section 6.5.4), this

omission might drive up the overall sample length and skew the statistics slightly.

However, both in Train and Pre-Train, the NT corpus makes up about 30% of the

data set, with the largest margin lying between the WSJ proportions of 35% and

25% respectively, as can be seen in Figure 5

Figure 5: Proportion of source domain in both data sets. The Wall Street Journal

(wsj) is skewed toward Train, the Chinese Treebank (chtb) towards Pre-
Train.
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This work uses a RNN based on the LSTM (Hochreiter and Schmidhuber, 1997)

architecture detailed in Section 2.2.3. From each cell’s hidden state an antecedent

score is calculated using a FFNN. The logarithmic normalised exponential function

(softmax) over all FFNN outputs gives the position of the prospective antecedent

head. A diagram of the full architecture is shown in figure 6 below.

Figure 6: A diagram of the model’s layers. Each token is represented by the con-

catenation of their GloVe embedding and a syntactic feature vector. These

are processed by a BiLSTM layer, and the concatenated cell outputs fed

into a FFNN, which calculates an antecedent score. The model returns a

softmax over all antecedent scores.

5.1. Input & Output
300 dimensional pre-trained GloVe embeddings trained on 6 billion tokens from

Wikipedia are used as word vector representations. Pre-trained embeddings of size

50 were also briefly tested, but led to marginally worse results and were dropped

as a result.
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... large extent that they won the other party ...
xvocab : [ 513, 8329, 223, 2078, 121, 33, 839, 4943 ]
xhead : [ 0, 1, 0, 1, 0, 0, 0, 3 ]
xPOS : [ JJ, NN, IN, PRP, VBD, DT, JJ, NN ]
xspan : [ 6, 6, 0, 7, 0, 8, 8, 8 ]
xdist : [ 0, 1

2 , 0, 1, 0, 0, 0, 0 ]

y : [ 0, 0, 0, 1, 0, 0, 0, 0 ]

Table 3: Example of input and output vectors for a given sentence. Head, POS
tag and span are randomly embedded into a vector space, words are
embedded according to their GloVe vector and distance is given to the
system as-is.

Mentions, including their heads and spans, were generated with a proprietary

parser (Honnibal and Johnson, 2015). Mention head values correspond to no
label (0), is-candidate-head (1) and is-anaphora-head (2). Because cataphoric

constructions are quite rare, all candidates following the anaphora were given no

label during testing to discourage such classifications. The POS tagger used the

Penn Treebank tag set from OntoNotes 5 (Weischedel et al., 2013).

Wrong spans or heads were not pruned, but if the antecedent head was not found,

a gold annotation was added by hand and marked as such. A neural network could

pick up on the fact, that these candidates were hand annotated4, so only the correct

antecedent for these samples is given during training. Cases, where the anaphora

head was not correctly identified in preprocessing were excluded.

It may also be noted, that for pre-training on a coreference corpus, all found

mention heads were given to the system as-is and were not manually annotated

beyond the original coreference labels lifted from OntoNotes (Pradhan, Ramshaw,

et al., 2011; Pradhan, Moschitti, et al., 2012).

The distance of a given candidate to its anaphor is determined by calculating

the multiplicative inverse of the number of other candidate heads between the

candidate and the following anaphor. Distance is only calculated for candidate

heads, all other indices are given a distance of zero. This can be more thoroughly

defined as the distance measure di at index i with anaphor head at index ia and set

of candidate heads Ca for anaphor a at index ia:

di =

{
|{ic|c ∈ Ca; i ≤ ic < ia}|−1 if candidate head at index i,

0 else.

4They could be syntactically distinct from some class of candidates the parser could identify, which,
the more information is fed into a system, makes them uniquely identifiable as the correct
candidate.
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An example of the feature representations, as they appear before embedding, is

given in Table 3.

5.2. Embedding Layer
Each token is fed into the LSTM layer as a concatenation of word embedding and a

vector representation of the mention spans the token lies within, a distance measure

to the following anaphora, as well as their POS tag and a one-hot-embedding of their

head-property (or the absence thereof). Each feature is represented by a random

projection into a multidimensional vector space, while words are represented by

their GloVe vectors.

If a given token is part of multiple mentions (e.g. U.S. in U.S. president), all

span embeddings of overlapping spans are summed. Since mention overlap occurs

only on rare occasions, most mention representations for a given token are not

transformed this way and the impact of transformations, when they occur, was not

further explored.

All feature embeddings are concatenated and given to the BiLSTM cells as input.

5.3. BiLSTM Layer
This work uses a standard BiLSTM, described in more detail in Section 2.2.3.

Because of the limited data size, I chose not to include bias or dropout in this layer.

Likewise, I only use a single layer (i.e. no stacked LSTM).

Learning rate and hidden size were tuned before conducting the experiments. The

performance of all tested parameters is outlined in Section 6.2.

5.4. Feed Forward Layer
The output of each BiLSTM cell is fed into a small FFNN which in turn calculates

an antecedent score for each index. I use the same parameters for learning rate

and hidden size for the two layers of our feed forward network. Again, because

of the limited training size, a more complex network was not further explored.

The logarithmic softmax is calculated over all antecedent scores to find the best

antecedent candidate.

ς(s)i = log(
esi∑K
j=1 e

sj
) for i = 1, ..., K and s = (s1, ..., sK) ∈ RK
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5.5. Loss & Back-Propagation
As I use the logarithmic softmax as my final activation function, it is the obvious

choice to use a negative log-likelihood loss, which worked well during testing:

L =

|ỹ|∑
i=0

{
−log(ỹi) if i = ic

−log(1− ỹi) else.

Since the system should only classify one index as correct, and only one index is

correct, negative log-likelihood incentivises a confident prediction on one index,

which falls in line with the softmax output. Back-propagation for this model mirrors

the general LSTM back-propagation as outlined in Section 2.2.3 and is implemented

using the PyTorch call stack algorithm.

If the mean loss over the last epoch does not drop after three epochs, the model

at the lowest loss (early stopping) is returned for evaluation and, for pre-trained

models, further trained on the main task.

24



6. Experiments & Results

6.1. Evaluation Measure
Because the softmax only allows exactly one antecedent and every sample features

exactly one true antecedent, I measure each setup using micro- and macro-averaged

success rate over a 10-fold cross-validation. For this system and this data set, as

described above, this is equivalent to both true positive rate and positive predictive

value. For a different activation function, these measures would have to be further

differentiated.

Since samples that stem from the same document could lead to cross-contamination

when split across multiple folds, each sample from one document is hashed into

the same fold, which results in an uneven size of the train/test splits.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

[ 37, 57, 63, 57, 52, 39, 31, 62, 52, 62 ]

Table 4: Size of each cross-validation fold. 5-fold cross-validation is performed on

concatenations of two folds respectively.

For the pre-training experiments, all models are trained on the same 3825 samples

from the Pre-Train corpus, but evaluated on the same ten folds as the other systems.

The models trained for each fold are then kept, for the same folds, for the main

training task.

Since the two-sentence window can feature multiple mentions of the same an-

tecedent entity, the system only has to return any mention head of the true an-

tecedent entity. Coreferent mentions are found using span annotations from the

OntoNotes 5 coreference annotation (Weischedel et al., 2013). Since mention spans

in our corpus were created by a dependency parser (Honnibal and Johnson, 2015)

and OntoNotes was annotated by hand, some coreference relations might still be

missing.

Statistically significant results (p < 0.01) are marked as such. Bootstrapping (Efron

and Tibshirani, 1993) is used for significance testing. The exact method and further

examinations of significance for this data set are explored in more detail in Section

25



6. Experiments & Results

6.6.

If not otherwise stated, any given report of success rate hereafter considers the

micro-average result.

6.2. Parameter Tuning
Parameter tuning was performed on a five-fold cross-validation of the full 512

sample training set, with 3825 samples in the pre-training set. Because the limited

test data leads to a high threshold for significant results, only parameter changes in

octaves were considered. Changes in orders of magnitude would be nonsensical for

almost every parameter for more than two or three variations (e.g. a batch size of

0.1 is not possible, while 1000 exceeds the amount of training data). A change in

octave is still substantial, but allows a larger number of options to be tested.

Learning Rate Epochs Batch Size Hidden Layer Size Success Rate
Micro-Avg. Macro-Avg.

2−11 16 16 256 29.49% 28.68%
2−9 " " " 29.10% 29.45%
2−7 " " " 27.34% 27.06%

2−9 4 16 256 27.54% 27.44%
" 8 " " 28.32% 27.99%
" 32 " " 30.47% 29.84%
" 64 " " 28.32% 27.93%

2−9 32 4 256 23.24%‡ 23.44%
" " 8 " 29.30% 29.43%
" " 32 " 29.29% 29.37%

2−9 32 16 64 24.80%‡ 24.94%
" " " 128 30.27% 30.16%

2-9 32 16 512 30.47% 30.31%
" " " 1024 28.32% 28.35%

Table 5: Parameters for further training were selected based on the results of
a single run over a five fold cross-validation setup. Pre-Training was
initialised with a learning rate of 2−10, 4 epochs and a batch size of 32.

The parameters for pre-training were set beforehand somewhat arbitrarily and

optimised in limited experiments after determining the optimal system parame-

ters (see table 5). It should be noted, that only the marked setups (‡) perform

significantly (p < 0.01) worse than the “best” setup (bold), which was used in all

following experiments. These experiments seem to give lower limits of parameters

to achieve a success rate of about 29%, but do not conclusively indicate an optimal

setup above these minimal parameters.
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6.3. Baselines
The architecture outlined in section 5 is evaluated against three naïve baselines.

More complex baselines (e.g. greatest head embedding similarity) were discarded

early because of poor performance and not further developed. Every baseline only

considers preceding candidates, since cataphoric recency would lead more often

than not to false positives. The performance of the hybrid system presented in

Modjeska (2003) (54.25%) on a similar task, should be recognised at this point, but

because of differences in data sets and the amount of preprocessing and external

information used, can not be directly compared.

6.3.1. Random

The random baseline selects any preceding mention head to the anaphor. Because

of the exclusion of cataphors, it is not a true random baseline, which would also

consider heads of mentions that appear after the anaphor.

6.3.2. Recency

The recency baseline selects the closest preceding mention head and could be

considered a majority baseline on the distance measure, as the plurality of anaphoric

mentions precede the anaphora directly (see Section 4).

6.3.3. Head Match

The head match baseline selects the closest preceding mention with the same

(lemmatised) head as the anaphora. If no mention features the same head within

the two-sentence window, the recency baseline is used. This baseline suffers the

most from incomplete entity matching, as head matches occur infrequently on

the first preceding mention of an entity, but only directly preceding mentions are

annotated for this task. The matched head would have to be marked as correct

through the coreference matching process.

6.4. Results
The model is tested in three different permutations: The Pre-Train model is only

trained on the filtered coreference samples. The Train model is trained exclusively

on comparative anaphora samples. The Full model is trained on both, in succession.

Running the system with the parameters found most suitable in Section 6.2, the

models yields the following results:
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Full (1) Train (2) Pre-Train (3) Recency (4) Head Match (5) Random (6)

Macro-Average

32.75% 29.44% 25.67% 23.02% 21.92% 4.33%

Micro-Average

32.81%‡ 29.69%† 25.98%∗ 22.85%∗ 22.92%∗ 4.30%

Table 6: Macro- and micro-averaged results of all systems (BiLSTM with pre-training (1),

BiLSTM without pre-training (2), BiLSTM only trained on coreference samples (3),

recency, head match and random baselines (4-6)) over a ten-fold cross-validation

on 512 data samples. Significance is highlighted for micro-averaged results5.

6.4.1. Ablation

The impact of individual covariants on the success rate was tested using the Train
setup. The full list of tested permutations is given in Table 7.

Covariant Success Rate p-value

Micro-Avg. Macro-Avg.

w/o POS 29.88% 29.57% 0.334↑

w/o Embeddings 27.15% 27.35% 0.231↑

w/o Heads 27.93% 28.26% 0.331↑

w/o Distance 33.59% 33.50% 0.004↑

w/o Spans 33.59% 33.88% 0.009↑

w/o Spans/Heads 24.80% 24.63% 0.022↓

w/o Spans/Distance 34.18% 33.89% 0.005↑

w/o Spans/Heads/Distance 26.95% 27.30% 0.159↑

only Embeddings 22.27% 22.15% 0.001↓

only POS 25.00% 24.86% 0.041↓

Table 7: Micro- and macro-averaged success rates for multiple ablation experiments. Sig-

nificance is tested against the results from the Train model.

H0: There is no performance change from dropping a given covariant.

↑ indicates a significant increase, ↓ a significant decrease (p < 0.01).

Most results were not significant enough to warrant any conclusion, but distance

and span annotation did impact performance negatively. The way the mention

spans are conveyed to the system could lead to the incorrect predictions. Because

each sample mention is labelled from left to right, the span IDs could be interpreted
5 ‡ : p < 0.01 for (3)-(6); † : p < 0.01 for (4)-(6); ∗ : p < 0.01 for (6)
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by the system as a very inconsistent distance measure. As the true antecedent tends

to stay close to the anaphor, and size of samples varies by domain, span ID taken

as distance could be a hindrance for transferring knowledge from one domain to

another.

The systems using distance as a covariant classifies indices as antecedent heads

two tokens farther from the anaphor head than their counterparts without distance

features (14.2 vs. 12.3 tokens). As a consequence, the distance models may have

learned to classify close to the mean distance (13.75 tokens), not close to the median

(10 tokens). The latter could have yielded better results due to the long-tailed

distribution of true antecedents at distance (see Figure 13). Only considering

incorrect predictions, the mean distance to the anaphor head further increases to

15.7 and 13.6 tokens respectively.

The results after dropping distance and span labels can be found in Table 8 below.

Full (1) Train (2) Pre-Train (3) Recency (4) Head Match (5) Random (6)

Macro-Average

33.22% 32.54% 26.88% 23.02% 21.92% 4.33%

Micro-Average

33.59%‡ 32.42%† 27.15%∗ 22.85%∗ 22.92%∗ 4.30%

Table 8: Success rates for all systems after dropping distance measure and span labels.

Significance is highlighted for micro-averaged results, as before6.

The Full model’s success rate does not see a significant increase from dropping span

labels and distance. The Pre-Train model gains about 1%, which could be due to

normal variation, while the Train model increases to the Full system’s level.

6.4.2. Training Data

To measure the impact of the provided training data (and judge whether more

annotation would lead to a significant performance increase), I perform a 10-fold

cross-validation with randomly sampled training sets of sizes 20, 21, and so forth,

up to 449 (the training size for the largest test fold) from each training subset. For

the Full model, each fold of each subset continues training on a copy of the same

model pre-trained on 3825 coreference samples.

6 ‡ : p < 0.01 for (3)-(6); † : p < 0.01 for (4)-(6); ∗ : p < 0.01 for (6)
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Figure 7: Success rate for size of training data. The Full system continues training

from the rightmost Pre-Train model.

All models show a general upward trend, suggesting that more training data could

lead to further increases. The head start from pre-training could not be retained for

the Full system, with the success rate dropping to Train levels with only 64 samples.

For each run of any of the neural models, a major variation in performance could

be observed, usually varying between 10 and 40 percent success rate between folds.

As a consequence, more annotation, specifically for a validation set, could result in

a noticeably higher success rate. This is even more so the case for pre-training, as a

validation set could offer a condition for early stopping that is actually founded in

the task, not in an approximation.
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6.5. Error Analysis

6.5.1. Overlap

Figure 8 shows the overlap of predicted

indices between each system (e.g. the

Full and Train models predicted the same

index as antecedent head 147 times

when Pre-Train chose a different index).

The gradual alignment of Train and Full
clearly stems from a higher similarity in

predictions. This could be due to more

training “overwriting” previously learned

knowledge from pre-training.

A lower learning rate could lead to more

retainment of pre-trained knowledge. An

alternative would be to feed coreference

samples during further training or merg-

ing the data sets altogether.

Figure 8: Overlap in predicted in-

dices between the three

models.

The assumption that actual comparative anaphora data is to be of so much higher

quality for training, as to be kept separate and trained on in succession, may have

to be reevaluated, with both systems achieving rather similar results.

6.5.2. Non-Head Predictions

There is no hard constraint preventing the model from predicting tokens as an-

tecedent heads, that have not been annotated as a candidate. There are a few

cases of this being the correct annotation in training, as heads after the anaphor

are not tagged. Nonetheless, both the Train, as well as the Pre-Train model learn

to annotate only candidates eventually, as is evident in Figure 9. While non-head

predictions are not common in the final systems, the Pre-Train model in particu-

lar needs many iterations to learn this constraint, despite not encountering any

cataphoric samples during training.
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Figure 9: Number of non-head predictions, i.e. predictions on indices that have not

been annotated as candidates, for each system and size of training set.

6.5.3. Part-of-Speech

Figure 10: Number of positive classifications broken into correct and incorrect

predictions, sorted by POS tag. The results are taken from the Full
model’s output.

The POS tag of the true antecedent could influence the system’s decision, as some

parts of speech might be more informative by nature for any given anaphora.

Antecedents with proper nouns, singular as head performed much better than any

other metric, while nouns, both singular and plural, achieved results slightly below
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average. Proper nouns, singular fell in line with 28,%.

Other parts of speech, with 24 occurrences total, appeared too infrequent to make a

qualitative statement. Of these other samples, four are non-nominal named entities,

which were all adjectives indicating nationality, one of which can be seen in the

following example from the corpus:

I believe Mr. Kageyama left out one major aspect of Japanese culture

that permeated his piece: the belief in the superiority of Japanese culture

and behaviour versus others.

The full breakdown of each POS tag can be seen in Figure 10. It might be a

reasonable assumption that those POS tags, which only appear infrequently as

antecedent head, might be harder for the model to classify as anaphoric. This

is clearly the case for prepositions, which have the highest proportion of head

appearances and by far the highest success rate. This is also mirrored for nouns,

plural, which appear slightly more often as heads than their singular counterparts,

and perform better accordingly.

6.5.4. Source Domain

Figure 11: Number of positive classifications broken into correct and incorrect

predictions, sorted by the domain of the sample. The results are taken

from the Full model’s output.

As is evident from Figure 11, samples from the NT corpus were classified about

half the time correctly, a major jump from the 21% achieved on the WSJ corpus.

This may most obviously be due to the fact that the NT samples with a mean word
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count of 28 are only half as long as those from the WSJ or English-Chinese Parallel

Treebank (ECTB) corpora, which measure 53 words in the mean each.

6.5.5. Comparative Modifier

Figure 12: Number of positive classifications broken into correct and incorrect

predictions, sorted by comparative modifier. The results are taken from

the Full model’s output.

Figure 12 shows the success rate broken down for comparative modifiers. As

expected, other appears most often in our data set, closely followed by others,
which is largely because of its prevalence in the NT corpus. Morphological (e.g.

“greater”, JJR) and syntactic comparatives (“more beautiful”) combined make up

about a fifth of the data set. Others-anaphora are successfully resolved 48% of the

time, other-anaphora coming in second with 28% success rate.

The relationship between the NT corpus and the comparative modifier others should

be highlighted at this point. 53% of the occurrences of others appear in the NT

samples, for the WSJ this percentage is only at 16%. As a result, 54% of the NT data

set have others as the anaphor. It is unclear, if the high success rate for anaphors

with others as comparative modifier is so high, because it so often appears in simple

NT samples, or the NT samples are so easy to classify because they can easily learn

from the many similar samples also employing other as modifier.
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6.5.6. Distance

Figure 13: Success rate and number of samples at distance x between anaphora

and antecedent head. The results are taken from the Full model’s output.

The 15 samples with a distance of < 2 are all cataphoric.

Figure 13 shows the distribution of true antecedents at distance from the anaphora,

as well as the success rate at each. While the first antecedent is the most frequent

true antecedent, the average antecedent is in fourth place, due to the long-tailed

nature of the distribution. Performance increases the closer the antecedent is to the

anaphora. Whether this is because the model learned the majority class or because

information of the anaphor is getting lost through the LSTM for farther antecedents

is up for debate.

The Train model does classify more frequently at a higher distance than the Full
model, with 40% more samples at a distance of over 20 tokens from the anaphora.

On average, both systems are off from the true antecedent by 13.5 tokens, not

counting correct predictions.

6.6. Significance
Since the underlying distribution of our system is not known, we use a non-

parametric pairwise bootstrapping test for significance testing (Berg-Kirkpatrick

et al., 2012). We sample 106 pseudo test sets from the merged cross-validation

results of a 10-fold run of each variation of our system and count the number of
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pseudo test sets that result in each success rate. The resulting distributions can be

seen in Figure 14.

Figure 14: Bootstrapped confidence intervals for all systems with 10-fold cross-validation.

The x-axis denotes success rate and the y-axis shows the number of boot-

strapped test sets for which this result was achieved. Confidence interval

(C = 95%) are marked with vertical lines.

The confidence intervals in Figure 14 should not be confused for the p-values

given in Table 6, which were calculated pairwise using the algorithm proposed in

Berg-Kirkpatrick et al. (2012), as they show no correlation of specific systems for

individual data points. For example, an arbitrary system A classifies samples n ⊂ x

correctly, while system B correctly predicts only samples m ⊂ n. As we cannot

draw any precition tuples from this distribution, which would have system B giving

the true and system A giving a false prediction, the bootstrapped p-value would

equal zero. This does however have no impact on the overlap of the distribution

of achieved accuracy over b samples, which informs the given confidence intervals

(and also highlights an issue with calculating p-values from confidence intervals).
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7. Conclusion

This thesis, at its core, investigates the relationship between different anaphora

resolution tasks, and the approaches to each. This is evident by the experiments

of pre-training a comparative anaphora system on the coreference task, and from

employing a neural architecture previously successfully, albeit in a more complex

whole, used for coreference resolution.

Section 4 introduces a new, cross-domain corpus for comparative anaphora res-

olution. With the exclusion of list- and than-constructions, it consists largely of

non-trivial samples of in-text comparative anaphora, making it a tough benchmark

for any comparative anaphora resolution system. This corpus is supported by a

larger pre-train data set, gathered from coreferent mention pairs and filtered to

suit the general makeup of the main task’s data set.

Section 5 presents a simple architecture meant to convey the semantic informa-

tion found in word embeddings between anaphor and antecedent. The presented

BiLSTM features a loss and output function fitted to the task. In addition to

word embeddings and candidate annotation, distance, mention spans and POS

tags are encoded to convey information intuitively relevant to the task. Although

two of these features later proof to be detrimental to the performance, they give

nonetheless insight into how representation shapes information in the case of

neural networks.

Section 6 provides valuable insight for employing a recurrent network in the com-

parative anaphora task. The system only trained on selected coreference pairs

does not fall far behind systems, proving a general close relation between the

two tasks. Encoding additional features beyond word embeddings proved more

difficult as expected. A distance measure, which is expected to perform well on this

task, as it is a standard metric in almost every other anaphora resolution system

(Modjeska, 2003; Lee, He, Lewis, et al., 2017; Roesiger et al., 2018), did lead to a

performance decrease. The span label feature did also negatively affect the success

rate, which can be more easily explained through its encoding, which could be

misread as a (misleading) distance measure by a neural system.

Bible texts prove to be vastly different to the other domains in the data set. Not
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only are the texts from the NT texts easier to classify due to their shorter length,

but the vocabulary from which anaphor heads are drawn, is dominated by a single

term, others, which is itself a kind of outlier for comparative anaphora, as it does

not feature a comparative modifier.

Finally, this thesis lays further ground work for evaluating and annotating compar-

ative anaphora. The data sets used are made freely available and present a tough

to beat benchmark for any system to come. The recurrent model used in this thesis

presents a simple neural baseline for future systems trained on this task.
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8. Future Work

The first hypothesis stated in Section 1 could not be clearly answered. Even though

every baseline was surpasses significantly, the results are below what would be

expected on this task. Section 6.5 did address multiple possible causes for the low

learning rate, but this inconclusive result does not clearly answer if the information

relevant to the task is conveyed through word embeddings, or not. This work

largely treats the LSTM as a black box, but the cell state should, if correctly trained,

carry information, especially from the anaphor, to candidates and vice versa in

the opposite direction. A closer analysis into how an LSTM may carry anaphor

information should be looked into in future works on recurrent networks and

anaphora resolution.

While this work showed that in certain limited training environments, pre-training

certainly provides an advance that the plain training model has to catch up to. In

the conducted experiments it eventually does.

As noted in 6.4.2, further annotation might lead to a significant increase in perfor-

mance, provided the trends indicated on the limited experiments conducted in this

work can be generalised7. The process in which coreference samples are collected

could be expanded, as the gradient descent works much smoother on the Pre-Train
set, as on Train. A larger pool of training samples would also allow the creation

of a validation set, making a better condition of early stopping possible. This is

especially useful for pre-training, as early stopping is so far conditioned on the

approximated coreference task.

A transformer architecture could also be considered, as it performed well in other

NLP tasks Devlin et al. (2019). Training a neural network as outlined in Vaswani

et al. (2017) is however highly resource expensive and the necessity and value of

using such a system on this task should be determined before conducting research

in this direction.

7Propædeutics for further annotation in accordance with the data used to educate our system are
provided among the appendices of this thesis.
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A. Notes on Annotation

While annotating for this task I largely followed my own informed intuition. The

following is a by no means complete list of cases, which I deemed non-anaphoric

or which I thought complex enough to warrant further comment:

• “The older generation.” “The older brother.” If not clearly indicated otherwise,

were considered idiomatic and discarded.

• “On the other hand/side.” Discourse markers, discarded.

• “More” without adjective. Largely exophoric, took up a lot of annotation time.

Could be excluded to that end.

• Non-anaphoric lists. If the antecedent is not referenced in the surrounding

list construction, the sample was annotated.

• Split antecedents. The closest member of the split antecedent to the anaphor

head was annotated.

• Cataphora. Annotated, but not given as candidate during testing.

• “The more important question.” Discourse marker, discarded.

• “The other argument/thing.” Discourse marker, discarded.

• Elliptic constructions, zero pronouns. Difficult to find with parser, therefore

not included.
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B. Notes on Implementation

The full project was implemented in Python 3.7.38. I used the following proprietary

packages with the stated version below:

Package Version
bcolz 1.2.1 notebook 6.0.0

beatifulsoup4 4.7.1 numpy 1.16.4

conda 4.7.12 pandas 0.24.2

html5lib 1.0.1 scikit-learn 0.21.2

jupyter 1.0.0 scipy 1.3.0

matplotlib 3.1.0 spacy 2.2.1

nltk 3.4.4 tqdm 4.32.1

torch 1.2.0

Most notably, the annotation tool (see Figure 15) relied heavily on SpaCy’s depen-

dency parser to identify anaphora and antecedent candidates by their syntactic

structure, their POS tags or the NE parse. This work could not have examined

non-other-anaphora if the dependency and NE parse, and if host of other NLP

features were not so conveniently bundled.

Figure 15: Interface for annotation. The correct antecedent is marked by the

annotator by ID. The head and span boundaries are highlighted.

The system itself was entirely written in PyTorch. This allowed for easy modularisa-

tion and quick changes for the many experimental setups this work went through.

Visualisations were done with Matplotlib.
8The full code and corpus will be made available at
gitlab.cl.uni-heidelberg.de/zimmermann/bachelor.
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